Technical information k-faktors

k-factors for the flow rate calculation

$$q_V = k \times \sqrt{\frac{2 \times \Delta p}{\rho}}$$

 $q_V = air flow$ [m³/h]

k = k-factor

 $\rho = density of air$ [kg/m³] $\Delta p = differential pressure$ [Pa]

This formula is valid for the following brands:

- Rosenberg Ventilatoren GmbH
- Gebhardt Nicotra GmbH

$$q_V = k \times \sqrt{\Delta p}$$

 $q_V = air flow$ [m³/h]

k = flow factor

 Δp = differential pressure (of static pressure) [Pa]

This formula is valid for the following brands:

EBM Papst GmbH

$$q_V = k \times \sqrt{\Delta p_w}$$
 at standard state 20°C

$$q_V = \sqrt{\frac{\rho_{20}}{\rho operation}} \times k_{20} \times \sqrt{\Delta p_w}$$
 in case of deviating air conditions

 $q_V = air flow [m^3/h]$

k = k-factor

 $\Delta p_{w} =$ differential pressure (of static pressure) [Pa] $\rho_{20} =$ standard air density 1,2 [kg/m³] $\rho_{oper.} =$ air density operating point [kg/m³]

This formula is valid for the following brands:

Ziehl Abegg SE